SNMP Informant™

Installation and Configuration Guide

Release 2014.1
Table of Contents
Introduction ... 1
About Informant Systems, Inc. .. 1
Statement of Limitations .. 2
NMS Compatibility ... 2
Warranty .. 2
SNMP Informant Overview .. 3
Product Description .. 4
 Performance Providers .. 5
 WMI Providers ... 6
 Custom Providers .. 7
System Requirements ... 8
Installing Pre-requisites .. 9
 Installing the Microsoft Windows SNMP service .. 9
 Windows Server 2008 .. 9
 Windows Server 2008 Core ... 9
 Windows Vista/7 .. 9
 Configuring the Microsoft Windows SNMP service .. 10
 Windows Server 2008 .. 10
 Windows Server 2008 Core .. 11
 Windows Vista/7 .. 12
SNMP in General ... 12
Installing SNMP Informant .. 13
 GUI Installation .. 13
 Command Line Installation ... 24
 Configuring SNMP Informant .. 26
 Registry Settings and their Meanings ... 27
Uninstalling SNMP Informant .. 31
Using SNMP Informant ... 31
 General Usage Notes .. 31
 Using the PDH Providers .. 32
 Understanding Performance Counters ... 34
 SNMP Informant Decimal OID instance to ASCII Character Conversion Table 35
 Using the WMI-Exchange Provider .. 36
 Using the WMI-OS Provider ... 40
Using the MSCS Provider ... 42
Using the Custom Provider .. 43
The Agent Definitions File: .. 46
An important note about the SNMP Informant Custom Helper Service .. 47
Common SNMP Informant OIDs .. 57
Troubleshooting SNMP Informant .. 60
Troubleshooting Table .. 60
Troubleshooting PDH Providers .. 61
Troubleshooting WMI Providers .. 62
Troubleshooting Custom Providers .. 64
An important note about SNMP Informant Helper Services .. 64

Table of Figures
Figure 1 – SNMP Informant Functional Overview ... 4
Figure 2 – SNMP Informant Application Structure (Performance Provider) ... 5
Figure 3 – SNMP Informant Application Structure (WMI Provider) .. 6
Figure 4 – SNMP Informant Application Structure (WMI Provider with helper service) 7
Figure 5 – SNMP Informant Application Structure (Custom Provider) .. 7
Figure 6 – Anatomy of an SNMP Informant OID .. 32
Introduction

Thank you for downloading and using (or trying) SNMP Informant. We are sure you will like what you see, and recognize the value in our products. This document is intended to help you make the most of SNMP Informant. If you have any comments about this document (omissions, corrections, etc.), please contact product.support@informant-systems.com, and let us know.

We have always strived to provide excellent value for your money with SNMP Informant. If you are pleased with this product, please tell your colleagues and friends. If not, please tell us, so we can address your concerns as soon as possible.

- Please note: We’ve changed some terminology in this version. Where sometimes we referred to our products as “agents”, they are in fact, data “providers”, loaded as an “extension” to the base Microsoft SNMP agent (or a replacement SNMP stack, if compatible). In other terminology (outside of this document), SNMP extension agents are sometimes referred to as “sub-agents”.

About Informant Systems, Inc.

Informant Systems has been developing and providing the network management community with cost-effective SNMP extension agents for Windows operating systems and server applications since 1999. Our flagship product, SNMP Informant™ is in use by small, medium and large organizations around the world, including Universities, financial institutions, Fortune 500 companies and large multi-national organizations.

Resellers or commercial product developers interested in bundling or reselling SNMP Informant are encouraged to contact product.info@informant-systems.com in order to find out more information.

- Product Information: product.info@informant-systems.com
- Product Support: product.support@informant-systems.com
- Primary Contact: Garth K. Williams – President and Managing Director garth.williams@informant-systems.com
Statement of Limitations

Although we have attempted to find and correct any bugs in the software, we will not be held responsible for any damage or losses (of ANY kind) caused by the use (or misuse) of this product. Names, icons, functionality, file format, etc. are subject to change in future versions of SNMP Informant without notice.

Also, while we are well aware that we cannot control who downloads and/or uses SNMP Informant, we would like to make it clear that:

UNDER NO CIRCUMSTANCES IS SNMP INFORMANT DESIGNED TO MANAGE, SUPERVISE CONTROL, MONITOR OR OTHERWISE INTERACT WITH INSTRUMENTS AND/OR EQUIPMENT THAT MIGHT POTENTIALLY AFFECT HUMAN LIFE.

For example:

SNMP Informant is not designed for, nor is it intended to be used to monitor or interact with computer systems that might be used to construct, operate or maintain any type of the following facilities (including but not limited to):

- Hospitals
- Nuclear power
- Air/ground traffic, rail and/or maritime control or navigation
- Other commuter transport (bus, taxi, etc.)
- Military (operations, control, etc.)

NMS Compatibility

The SNMP Informant MIBS are written to comply with RFC standards, and are compiled and tested on several different MIB compilers and applications in order to ensure maximum compatibility. Nonetheless, we make NO guarantees that they will compile on any SPECIFIC product. In the event that you have problems using SNMP Informant (i.e. compiling SNMP Informant MIBs) with your particular NMS, please consult the Product Support Forums.

Warranty

All versions of SNMP Informant are warranted to operate EXACTLY as described on the SNMP Informant web site (www.snmp-informant.com). If you have ANY questions about SNMP Informant’s ability to gather certain performance metrics, please contact product.info@informant-systems.com, and we will be pleased to help you out.

- Please note: While we endeavor to ensure our software runs “worry-free”, we make no guarantees that it will be bug-free.
SNMP Informant Overview

SNMP Informant products are advanced Simple Network Management Protocol (SNMP) extension agents that provide the capability to access Microsoft Windows Operating System and Application Server Performance Counters, WMI classes and other (i.e. registry and custom script) information through the SNMP protocol.

SNMP Informant provider information can be accessed natively using SNMPv1, SNMPv2 or SNMPv3 (see below) protocols from an SNMP Network Management System (NMS).

* NMS applications include (but are not limited to):
- Sciencelogic EM7
- HP Network Node Manager
- Paessler PRTG
- Groundwork
- Netmon
- IPMonitor
- OpenNMS
- Zenoss

... and others

... you will be amazed at how much Windows information SNMP Informant can expose to your NMS!

- IANA Private Enterprise Number 9600 is registered to WTCS (Informant Systems, Inc.). All our OIDs start with .1.3.6.1.4.1.9600.

SNMPv3

Since SNMP Informant is an SNMP Extension Agent (sometimes called sub-agents), it does not in and of itself support SNMPv3. It is the job of the SNMP service “stack” to support SNMPv3. The native Windows 2000, XP and 2003 SNMP service only supports SNMPv1 and SNMPv2. However, there are some Windows SNMP service replacements in the market today that claim to be 100% compatible with extension agents like SNMP Informant. Here are a couple of alternatives:

- **NuDesign Technologies** “Master Agent Service for MS Windows”. You can find out more about this product below:

- **Logisoft AR** have developed a product called SNMP Agent Defender, an SNMP v3 replacement stack. Find out more below:
 - http://www.logisoftar.com/ProductsSnmpAgentDefender.htm

While we’re pleased to present a couple of options for you, it is up to you (the customer), to do your due diligence when deciding on an SNMP stack replacement.

SNMP Traps

At present, SNMP Informant does not generate SNMP traps. We are looking at this functionality as a future enhancement.
Product Description

SNMP Informant agents are DLL (Dynamic Link Libraries) extensions to the Microsoft Windows SNMP service. The Windows SNMP Service must be installed properly, configured and running before the SNMP Informant agent is accessible.

SNMP Informant providers are designed to be installed on Windows Server software, although they can be installed on Windows XP, Vista and Windows 7. They are categorized as follows:

- **Performance Providers** – These providers connect to the Performance Counter sub-system, and allow performance counter information to be collected via SNMP.
- **WMI Providers** – also called State and Configuration providers, they connect to the Windows WMI sub-system, and allow WMI information to be collected via SNMP.
- **Custom Providers** – providers of this type allow you to collect either Performance or State/Configuration information from server applications that might not otherwise provide this information to either the Performance or WMI sub-systems.

Regardless of the provider type, taking advantage of the information SNMP Informant provides is very simple:

1. Step 1: Install/configure SNMP Service
2. Step 2: Install SNMP Informant
3. Step 3: Install SNMP Informant MIBs
4. Step 4: Collect the data
5. Step 5: Analyze the results

Figure 1 – SNMP Informant Functional Overview

Installing SNMP Informant is very easy. Once the SNMP service is correctly installed and configured on the designated system, the SNMP informant installer can be run (see the Installation and Configuration section). Depending on the validation key you enter, different providers will be enabled for installation.
Performance Providers

SNMP Informant Performance Providers connect through the Windows Performance Data Handler library to access server performance counters. A diagram illustrating this concept is shown below. As you can see, an SNMP GET request message is passed through the SNMP Informant DLL to the Windows performance sub-system and back again to the requesting entity.

![Diagram of SNMP Informant Application Structure](image)

Figure 2 – SNMP Informant Application Structure (Performance Provider)

A note about Windows 2000

Although it is an “end of life product”, Windows 2000 does not come “out of the box” with logical disk performance counters enabled*. Unless activated, the only Windows 2000 disk counters accessible by SNMP Informant are the physical disk performance counters. In order to activate logical disk performance counters on Windows 2000, do this:

1. Open an OS prompt
2. Type "diskperf -y" (omit the "")
3. Close the OS Prompt
4. Reboot the system

* Windows XP, Windows 2003, Windows Vista and Windows 7 dynamically activate logical disk counters as needed.

Application Server Performance Provider Notes

SNMP Informant Server Performance Providers extend SNMP Informant functionality by allowing SNMP to be used to query application specific performance counters using SNMP. Such applications at present include:

- **SQL Server** - supports SQL 2000/2005/2008 (including MSDE and Express)
- **Forefront Server** – supports Forefront TMG
- **WSUS Server** – supports WSUS 3.0
WMI Providers

Similar to the PDH Providers, SNMP Informant WMI Providers make data requests to the local WMI sub-system on the system where SNMP Informant is installed. See the figure below for a diagram representing the data flow for this type of provider.

![Diagram of WMI Provider Application Structure](image)

Figure 3 – SNMP Informant Application Structure (WMI Provider)

WMI Provider Notes

SNMP Informant WMI Providers extend SNMP Informant functionality by allowing SNMP to be used to server specific WMI information using SNMP. Such applications at present include:

- **Virtual Server** – allows SNMP to be used to access Virtual Server information
- **Hypervisor (Hyper-V)** – allows SNMP to be used to access Hyper-V information
- **Citrix** - allows SNMP to be used to access Citrix Presentation Server
- **OS** - allows SNMP to be used to access OS specific WMI information
- **HW** – allows SNMP to be used to access hardware specific WMI information

 o **Note:** This agents’ functionality will differ depending on motherboard hardware manufacturers’ support for the Windows 2000, 2003 and 2008 WMI system. If the motherboard manufacturer does not provide information to the WMI system, then SNMP Informant will not be able to access it.

WMI Provider Helper Services

The SNMP Informant WMI-OS and WMI-Exchange providers incorporate the use of a “helper service”. This helper service sits between the extension agent DLL and the WMI sub-system.

SNMP requests are received (by the SNMP service) from the NMS for OIDs that are derived from a WMI class, and passed from the SNMP Informant extension agent DLL to the helper service. Then, the helper service passes (proxies) that request to the WMI sub-system, and waits for a response.

When a response is received, the helper service passes it back to the extension DLL, and the extension DLL passes it back to the SNMP service. Figure 4 below illustrates this data flow.
Custom Providers

SNMP Informant 2010.1 and newer includes custom SNMP support for Microsoft Cluster Services and Citrix Presentation Server through APIs published for those products. This "bridge" allows information to be collected from those applications. This software must be installed on the server where SNMP Informant is installed.

In addition, SNMP Informant (as part of the Premium Provider) supports the ability for you to define your own OIDs for custom performance counters, registry entries, and remotely spawned processes (i.e. scripts) that collect data from other means.
System Requirements

SNMP Informant will install on the following operating systems. It does not run on Microsoft Windows 95, 98, ME, or NT. Operating systems that have reached end of life (indicated by italics) will no longer be supported if any issues are detected with SNMP Informant.

- Microsoft Window 2008R2, Enterprise Edition (x86/x64/)
- Microsoft Window 2008R2, Standard Edition (x86/x64/)
- Microsoft Window 2008, Enterprise Edition (x86/x64/)
- Microsoft Window 2008, Standard Edition (x86/x64/)
- Microsoft Windows 2003, Web Edition (x86/x64/)
- Microsoft Windows 2003, Web Edition (x86/x64/)
- Microsoft Windows 2003, Enterprise Edition (x86/x64/)
- Microsoft Windows 7 Home/Business/Ultimate (x86/x64)
- Microsoft Windows Vista Home/Business/Premium (x86/x64)
- Microsoft Windows XP Home/Pro(x86/x64)
- Microsoft Windows 2000 Datacenter Server
- Microsoft Windows 2000 Advanced Server
- Microsoft Windows 2000 Server
- Microsoft Windows 2000 Professional

Processor Requirement: minimum of a Pentium II class

- Memory Requirement: 32 MB
- Disk Space Requirement: 45 MB
Installing Pre-requisites

The SNMP Service is not installed by default on the Microsoft Windows operating systems and is not configured by default on the Microsoft Windows 2003/2008 operating systems. The SNMP Service must be installed and configured prior to installing any SNMP Informant provider. If the SNMP Service is already installed and configured, then skip to the Installing SNMP Informant section.

Installing the Microsoft Windows SNMP service

Since the Microsoft Windows operating systems vary slightly, the steps to install the SNMP Service may be deviate a little from this guide.

Windows Server 2008

You can add the SNMP service through the Add Features wizard. SNMP is a feature.

1. Start Control Panel then Programs and Features
2. Select Turn Windows Features on or off
3. Select Features
4. Select Add Features
5. Select SNMP
6. Choose Install

Windows Server 2008 Core

Use the following command within the core command prompt to install the SNMP service.

1. Start /w ocsetup SNMP-SC

Windows Server 2003, Windows Server 2000/Windows XP

You may also refer to the Microsoft Windows Help (Start/Help) under “SNMP Service (installing)” for more information on installing the SNMP Service.

You must be logged on as an administrator or a member of the Administrators group to complete this procedure. If your computer is connected to a network, network policy settings may also prevent you from completing this procedure.

1. Click Start, point to Settings, click Control Panel, double-click Add or Remove Programs, and then click Add/Remove Windows Components.
2. In Components, click Management and Monitoring Tools (but do not select or clear its check box), and then click Details.
3. Select the Simple Network Management Protocol check box, and click OK.
4. Click Next.
5. Insert the respective CD or specify the complete path of the location at which the files are stored.
6. SNMP starts automatically after installation.

Windows Vista/7

To install SNMP on Windows 7, open Control Panel and then click on Programs and Features. Then, click on "Turn Windows features on or off" link in the left pane. If UAC prompted, then click on Yes. Then, in the
Windows Features window, scroll down and select "Simple Network Management Protocol (SNMP)" check box and click on OK. Then, wait for some time to install SNMP.

Configuring the Microsoft Windows SNMP service

The Microsoft Windows SNMP Service must be configured before it can be accessed by any SNMP Manager software. Since the Microsoft Windows operating systems vary slightly, the steps to configure the SNMP Service may be deviate a little from this guide. You may also refer to the Microsoft Windows Help (Start/Help) under “SNMP Service (security, configuring)” for more information on configuring the SNMP Service.

Windows Server 2008

After installing the SNMP service, you need to configure agent properties, which contains general information such as who is responsible for managing the agent host and the types of services with which the agent will interact on the computer.

Right-click the SNMP service in the Services console and choose Properties to open the properties for the SNMP Service, or select the service and choose Action and then Properties to display the service’s property sheet. The General, Log On, Recovery, and Dependencies pages are the same as for other services.

Click the Agent tab to configure the following agent properties:

1. **Contact**: Specify the name of the person responsible for managing the host computer.
2. **Location**: Specify the physical location of the computer or the contact’s location or other information (phone number, extension, and so on).
3. **Physical**: Select this option if the agent host manages physical hardware such as hard disk partitions.
4. **Applications**: Select this option if the agent uses any applications that transmit data using the TCP/IP protocol.
5. **Datalink and Subnetwork**: Select this option if the agent host manages a bridge.
6. **Internet**: Select this option if the agent host is an Internet gateway.
7. **End-to-End**: Select this option if the host uses IP. This option should always be selected.

Configuring traps

Use the Traps tab of the SNMP service to configure computers to which the SNMP service sends traps. From the Community Name drop-down list, select the community for which you want to assign a trap destination. If you have no communities set yet, type the community name in the combo box and click Add to List. Then, click Add to display a simple dialog box in which you can specify the host name, IP address, or IPX address of the remote computer to receive the trap notification. Repeat the process to add other trap destinations as needed. **Remember: SNMP Informant does not send or receive SNMP traps.**

Configuring security

Use the Security tab of the SNMP Service’s properties to configure the communities in which the agent participates and optionally a list of hosts from which the agent accepts SNMP packets. By default, the agent accepts packets from all hosts. This presents a security risk, however, so take care to configure security settings to permit SNMP traffic only from authorized hosts. The Security page includes the following options:

1. **Send Authentication Trap**: Select this option to have the agent send a message to all trap destinations if the agent receives an SNMP request from a host or community not listed in the “Accepted community names” list or the “Accept SNMP packets from these hosts” list. The
message is sent to all hosts in the trap destination list on the Traps property page to indicate that a remote management system failed authentication (potentially indicating an unauthorized access attempt).

2. Accepted Community Names: Use this list and the related buttons to alter the list of communities in which the agent participates and the community rights for each. You can select from the following rights:

a. None: This option prevents the agent host from processing any SNMP requests from the specified community. For instance, you may configure None for the Public community for enhanced security.

b. Notify: Select this option to permit the agent host to send traps only to the selected community.

c. Read Only: Use this option to permit remote consoles to view data in the local MIB but not change it. This option prevents the agent from processing SNMP SET requests.

d. Read Write: Use this option to permit remote consoles to make changes on the managed system. This option allows the agent to process SNMP SET requests.

e. Read Create: Use this option to permit the agent to create new entries in the SNMP tables.

3. Accept SNMP Packets from Any Host: Select this option to permit the agent to process requests from all hosts in the “Accepted community names” list.

4. Accept SNMP PACKETS from These Hosts: Select this option to define a specific list of hosts from which the agent will process SNMP requests.

Windows Server 2008 Core

There are two different methods to configure the SNMP service.

Method 1

Configure SNMP service on a Windows 2008 server that has the full GUI using the directions above. Using regedit, export the following registry key to a file:

```
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SNMP
```

Copy the .reg file to the Windows 2008 core machine. On the core machine, run regedit.exe and import .reg file into the HKEY_LOCAL_MACHINE hive.

Method 1

Run the Computer Management on a Windows 2008 server that has the full GUI. Right click on the **Computer Management** from the tree root and select **Connect to another computer**... Enter the name of the Windows 2008 core machine you wish to configure. Configure the SNMP service using the directions above.

Windows Server 2003, Windows Server 2000/Windows XP

1. Click **Start**, point to **Settings**, and then click **Control Panel**. Double-click **Administrative Tools** and then double-click **Computer Management**.

2. In the console tree, click **Services and Applications** and then click **Services**.
3. In the details pane, scroll down and click **SNMP Service**.

4. On the **Action** menu, click **Properties**.

5. On the **Security** tab, select **Send authentication trap** if you want a trap message to be sent whenever authentication fails.

6. Under Accepted community names, click **Add**.

7. Under **Community Rights**, select a permission level for this host to process SNMP requests from the selected community.

8. In **Community Name**, type a case-sensitive community name, and then click **Add**.

9. Specify whether or not to accept SNMP packets from a host:

10. To accept SNMP requests from any host on the network, regardless of identity, click **Accept SNMP packets from any host**.

11. To limit acceptance of SNMP packets, click **Accept SNMP packets from these hosts**, click **Add**, type the appropriate host name and IP or IPX address, and then click **Add** again.

12. Click **Apply** to apply the changes.

Windows Vista/7

After installing SNMP, click on Start Orb and then type Services.msc in the Search box and hit Enter. Then, scroll down in the right pane and right click on **SNMP Services** and select **Properties**. Then, click on **Traps** tab. Now, in the **Community Name** box, type the community name to which your computer will send trap messages and then click on "Add to list" button. Then, click on **Apply** and then **OK**.

SNMP in General

Since we have some space on this page, here are some handy links to help you learn more about SNMP.

<table>
<thead>
<tr>
<th>Description</th>
<th>Hyperlink</th>
</tr>
</thead>
</table>
Installing SNMP Informant

SNMP Informant Agent installation programs provide two methods to install:

- **Graphic user interface (GUI)** – A graphics wizard based installation requiring input from the user either with the mouse and keyboard.

- **Command line interface** – An interface where you can install the software without any intervention from the user. Also known as an unattended or silent install.

This section will cover the GUI installation of the SNMP Informant-Premium product, which includes all SNMP Informant providers. Depending on the product(s) purchased, individual installs of various SNMP Informant agents will differ somewhat, and specific requirements will be noted. For more information on how to install via command line, read further

GUI Installation

Start the informant executable (typically **SNMP Informant 2014.1.exe**). Click the Next button in the welcome screen. The installer will detect whether the host OS is the x86 or x64 version.

![Welcome to the SNMP Informant (x64) Setup Wizard](image)

Read the License Agreement and click the “I accept the agreement” radio button if you agree with the license. Click the Next button.
Enter your registration information and the Serial Number/Validation Key supplied with your product. Click the Next button after entering the correct Serial Number/Validation Key.
If you are using a validation key that has expired, and are trying to install a newer version of SNMP Informant, you will be presented with a dialog box that tells you so, like this:

![Dialog box](image)

As the dialog box suggests, you can still use an earlier (previous) version of SNMP Informant, or you can request an evaluation key to get you by for the next 30 days while you upgrade your maintenance. Contact product.support@informant-systems.com for more information.

Enter where you would like to install the SNMP Informant Agent. Click the Next button.

![Select Destination Location](image)

If you already HAVE installed SNMP Informant, you will see this message.
Select the components you would like to install. The validation key you receive with your purchase will determine which components can be selected and installed.
Press Next when done.

Then, select the name of the Start Menu if you’d like to change it. Click the Next button.
If you are installing the Exchange 2000/2003/2007 WMI Provider agent, you will be prompted for a domain account to start the SNMP Informant Exchange Helper Service. Enter a valid domain user that has delegated Exchange View Only Administrator privileges at least.

If the account cannot be verified, you will see a message to that effect. You must rectify this situation or the install will not proceed.

For more information about configuring Exchange 2003/2007/2010 and SNMP Informant, see “Using SNMP Informant”.
If you are installing the Operating System WMI provider, you will be prompted for the SNMP SET functionality you desire to activate within SNMP Informant.

Verify the installation parameters and click the Install button.
SNMP Informant will check to see if it is running on the system you are upgrading. If so, you will be prompted to close the programs and continue. It is NOT recommended to proceed without closing the applications.

The installer will install the selected providers, and you will see an installation status bar moving across the install window.
If you have an error with the Exchange Helper Service credentials, you will see this error message during the install (it occurs when the service is started):

![Error Message]

If the SNMP service is not running, SNMP Informant will offer to send a start command if you’d like.

![Start Command Offer]

Congratulations! You have now completed the installation of SNMP Informant!

Next, check the Windows Application Event Log to confirm successful SNMP Informant component start-up. Each component selected will add its own startup message to the Application Event log, similar to the one shown below.
Note: when the SNMP service is stopped, SNMP Informant extension agents will also shut down, and will post information to that effect in the Application Event Log as well.

Command Line Installation

The Setup program accepts optional command line parameters. These can be useful to system administrators, and to other programs calling the Setup program.

/SILENT, /VERYSILENT

Instructs Setup to be silent or very silent. When Setup is silent the wizard and the background window are not displayed but the installation progress window is. When a setup is very silent this installation progress window is not displayed. Everything else is normal so for example error messages during installation are displayed.

If a restart is necessary and the '/NORESTART' command isn't used (see below) and Setup is silent, it will display a “Reboot now?” message box. If it’s very silent it will reboot without asking.

/SUPPRESSMSGBOXES

Instructs Setup to suppress message boxes. Only has an effect when combined with '/SILENT' and '/VERYSILENT'.

The default response in situations where there’s a choice is:

- Yes in a 'Keep newer file?' situation.
- No in a 'File exists, confirm overwrite.' situation.
- Abort in Abort/Retry situations.
- Cancel in Retry/Cancel situations.

Yes (=continue) in the following situations:

- DiskSpaceWarning
- DirExists
- DirDoesntExist
- NoUninstallWarning
- ExitSetupMessage
- ConfirmUninstall

Yes (=restart) in a FinishedRestartMessage/UninstalledAndNeedsRestart situation.

5 message boxes are not suppressible:

- The About Setup message box.
- The Exit Setup? message box.
- The FileNotInDir2 message box displayed when Setup requires a new disk to be inserted and the disk was not found.
- Any (error) message box displayed before Setup (or Uninstall) could read the command line parameters.
- Any message box displayed by [Code] support function MsgBox.

/LOG
Causes Setup to create a log file in the user’s TEMP directory detailing file installation and [Run] actions taken during the installation process. This can be a helpful debugging aid. For example, if you suspect a file isn’t being replaced when you believe it should be (or vice versa), the log file will tell you if the file was really skipped, and why.

The log file is created with a unique name based on the current date. (It will not overwrite or append to existing files.)

The information contained in the log file is technical in nature and therefore not intended to be understandable by end users. Nor is it designed to be machine-parseable; the format of the file is subject to change without notice.

/LOG=“filename”
Same as /LOG, except it allows you to specify a fixed path/filename to use for the log file. If a file with the specified name already exists it will be overwritten. If the file cannot be created, Setup will abort with an error message.

/NOCANCEL
Prevents the user from cancelling during the installation process, by disabling the Cancel button and ignoring clicks on the close button. Useful along with ’/SILENT’ or ’/VERYSILENT’.

/NORESTART
Instructs Setup not to reboot even if it’s necessary.

/RESTARTEXITCODE=exit code
Specifies the custom exit code that Setup is to return when a restart is needed. Useful along with ’/NORESTART’. Also see Setup Exit Codes.

/LOADINF=“filename”
Instructs Setup to load the settings from the specified file after having checked the command line. This file can be prepared using the ’/SAVEINF=’ command as explained below. Don’t forget to use quotes if the filename contains spaces.

/SAVEINF=“filename”
Instructs Setup to save installation settings to the specified file. Don’t forget to use quotes if the filename contains spaces.

/DIR=“x:\dirname”
Overrides the default directory name displayed on the Select Destination Location wizard page. A fully qualified pathname must be specified.

/GROUP="folder name"

Overrides the default folder name displayed on the Select Start Menu Folder wizard page. If the [Setup] section directive DisableProgramGroupPage was set to yes, this command line parameter is ignored.

/NOICONS

Instructs Setup to initially check the Don't create any icons check box on the Select Start Menu Folder wizard page.

/COMPONENTS="comma separated list of component names"

Overrides the default components settings. Using this command line parameter causes Setup to automatically select a custom type.

Configuring SNMP Informant

SNMP Informant has matured significantly over the past several years, and as a result, has an array of configuration options that you can adjust for optimal performance.

These configuration options are managed by way of registry settings for each agent. If you were to do a full installation of all SNMP Informant providers, you would see an HKEY_LOCAL_MACHINE/Software/WTCS/Informant registry hive that looked like this:

![Registry Hive](image.png)

Note: image shows SNMP Informant Standard (free version) version also installed.
Within each sub-tree below WTCS Informant are various settings to configure that specific agent. Some setting categories (names) are common across all agents, and some are unique to a specific agent. When SNMP Informant is installed, default values are assigned to the registry setting categories. You may need to operate your Network Management System for a period of time to determine what values need to be adjusted.

Note: The WTCS/Informant/Hardware and WTCS/Informant/OperatingSystem keys will have sub-hives called StringToEnumMapping. **DO NOT MODIFY THESE SUB-HIVES!**

Registry Settings and their Meanings

This section describes the registry settings used to control SNMP Informant’s behaviour. First of all, let's define what we call a query...

Query: A request made by SNMP Informant to the local subsystem (PDH - Performance Data Helper or WMI – Windows Management Instrumentation, or custom API), based on the SNMP GET, GETNEXT, or WALK request that SNMP Informant receives from a network management application or tool.

Below is a list of registry settings that can be adjusted by the user. Registry setting modifications for SNMP Informant are made at HKEY_LOCAL_MACHINE/SOFTWARE/WTCS/informant/<product>. The changes you make are at the <product> level are unique for that agent. Any other registry settings not described below within the WTCS/informant registry should not be changed and modifying the value may cause unpredictable results.
Setting: EventFilterMask
Applies to: All Agents
Registry Type: DWORD
Default Value: 7
Units: numeric (decimal)

The EventFilterMask value controls the level of messages SNMP Informant posts into the Application Event Log. Valid values and their meanings are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Log Information, Error and Warning messages</td>
</tr>
<tr>
<td>6</td>
<td>Log Warning and Information messages</td>
</tr>
<tr>
<td>5</td>
<td>Log Information and Error messages</td>
</tr>
<tr>
<td>4</td>
<td>Log Information messages</td>
</tr>
<tr>
<td>3</td>
<td>Log Error and Warning messages</td>
</tr>
<tr>
<td>2</td>
<td>Log Warning messages</td>
</tr>
<tr>
<td>1</td>
<td>Log Error messages</td>
</tr>
<tr>
<td>0</td>
<td>Log no messages</td>
</tr>
</tbody>
</table>

Setting: PdhInterface
Applies to: PDH Agents (Advance, BizTalk, Exchange PDH, ISA Server, SQL Server).
Registry Type: STRING
Default Value: .

SNMP Informant Performance Providers connect to the computers’ performance counter subsystem through an API (Application Program Interface) called PDH (Performance Data Helper). There are 2 methods to connect to PDH; directly and indirectly. Direct connection (choosing “null”) is faster, but bypasses (does not use) Remote Procedure Call (RPC) services, and MAY result in slightly more memory usage for SNMP.

Setting: MaxQueryCacheSize
Applies to: PDH Agents (Advance, BizTalk, Exchange PDH, ISA Server, SQL Server).
Registry Type: DWORD
Default Value: 300 PDH
Units: Number of queries

The number of different queries that can be cached for both GET and GETNEXT queries per agent. When a request comes in, it looks for the query associated with the OID in the cache. If it doesn’t exist, then it creates a query and caches it. The cache only contains entries that require multiple samples. For example, the CPU object will be in the cache, but the Memory usage will not, because the memory object counters are an "as at" (right now) sample. CPU on the other hand, is a calculated average value based on two separate samples. Both the last value and the query itself is stored. The query is used to take another sample. The last value is used for the computation to determine the average value. Increase this value for the necessary agent if you are receiving an error message from SNMP Informant stating that the query cache size was exceeded.
Setting: QueryLifeSpan

Applies to: PDH Agents (Advance, BizTalk, Exchange PDH, ISA Server, SQL Server).

Registry Type: DWORD

Default Value: 21600000

Units: milliseconds

This is the length of time a query (and the accompanying value) can exist in the cache without being requested before it is purged. Default time is 6 hours. If the query lifespan expires, then the query (and accompanying value) is deleted. Once this query is purged from the cache, a computation between it and a new query cannot be performed. Should this be the case, the new query is stored in the cache with a sample value of 0 (in preparation for a second query, where the new value and 0 will be used to calculate an average). If a query that exists in the cache is re-requested, the QueryLifeSpan counter restarts for that query. Increase this value if you are querying the same OID more than 6 hours between samples.

Setting: MinimumQueryRate

Applies to: PDH and WMI Agents

Registry Type: DWORD

Default Value: 5000 for PDH/30000 for WMI

Units: milliseconds

This registry setting determines how often a new value is gathered and a calculation is performed. SNMP uses the UDP (a lossy network protocol) to communicate with the managing station. Since the response can be lost or the managing station would timeout on the SNMP query and many calculation are based on the difference between the last raw value and the current raw value, the SNMP Informant agent will return the previous calculated value if the same request is made within the MinimumQueryRate registry defined period. This is done to prevent returning false calculated due to the SNMP Managing Station re-querying the request assuming that the packet was lost. A user would reduce this value if they are querying the same OID less than every 5 seconds.

Setting: GetInstanceTimeSpan

Applies to: PDH and WMI Agents

Registry Type: DWORD

Default Value: 60000 for PDH/21600000 for WMI

Units: milliseconds

This registry setting is used to identify when to look for new instances a PDH object. For example, when iterating across the “process” PDH object, there is a performance hit whenever you looked for a new instances. To minimize response time, we only look for new instances whenever the GetNextInstanceTimeSpan (default time is 60000 seconds) expires or we switch to a different PDH counter/object. Setting this value to a lower number will keep your instance list more accurate (current), but will do so at the expense of performance.
Setting: GetInstanceTimeSpanClass...

Applies to: WMI Agents (OS, Hardware, Exchange, Hyper-V, Virtual Server)

Registry Type: DWORD
Default Value: 21600000
Units: milliseconds
This registry setting is the same as GetInstanceTimeSpan above, but for a specific WMI class. This allows the user to set the instance refresh interval on independent MIB branches. This value overrides the global GetInstanceTimeSpan value.

Setting: QueryKeepAlive

Applies to: WMI Agents (OS, Hardware, Exchange, Hyper-V, Virtual Server)

Registry Type: DWORD
Default Value: 10000
Units: milliseconds
This registry setting specifies the maximum amount of time between two SNMP queries of the same MIB branch that prevents a new iterator to be generated. This prevents an iterator from changing in the middle of an SNMP walk, however, this will also prevent a new instances to be retrieved if the MIB branch is being queried constantly at a rate less than this registry setting.

Setting: WMIFunctionTimeout

Applies to: WMI Agents (OS, Hardware, Exchange, Hyper-V, Virtual Server)

Registry Type: DWORD
Default Value: 4250
Units: milliseconds
The amount of time to wait for a WMI function call to return before abandoning the call. This registry setting should be increased if you are having difficulty iterating across a MIB object due to the WMI call not being able to complete in time. Ensure that you also increase the HelperResponseTimeout registry setting for WMI-OS and WMI-Exchange agents.

Setting: HelperResponseTimeout

Applies to: WMI-OS and WMI-Exchange Agents

Registry Type: DWORD
Default Value: 4500
Units: milliseconds
This registry setting applies to SNMP Informant WMI agents that have a “helper service” only. It refers to the number of milliseconds the agent (extension DLL) should wait for a response from the SNMP Informant
helper service before timing out. The WMIFunctionTimeout should be increased appropriately if this registry setting is changed.

Setting: SpawnDirectory
Applies to: WMI-OS Agent
Registry Type: REG_SZ
Default Value: <installdirectory>\spawn> (eg. C:\Program Files\SNMP Informant\operating_system\spawn\)
Units: alphanumeric

This registry setting tells the SNMP Informant WMI-OS agent where scripts and executables that might be remotely spawned should start from.

Uninstalling SNMP Informant

The uninstall program included with SNMP Informant will remove the registry entries and clean up quite nicely, but you may need to manually remove the \Program Files\SNMP Informant\[product] directory yourself after the uninstall program has completed. This is because you may have created scripts etc. in subdirectories, and we don’t want to delete your work.

Using SNMP Informant

For the most part, once the SNMP service is properly installed and configured, SNMP Informant providers are ready immediately after install. Most providers require little or no configuration at all. If you need to “tune” SNMP Informant, see the “Configuring SNMP Informant” section.

After the SNMP Informant provider(s) have been installed and started (by the base SNMP agent), they can be queried by your SNMP Manager software.

General Usage Notes

OID Tree Listings

Please see the file in [install loc]SNMP Informant\[product]\mibs\informant-[product]-tree.txt for a complete tree listing of the OIDs supported by the various versions of SNMP Informant. For example:

- [install loc]SNMP Informant\advanced\mibs\informant-adv-tree.txt
- [install loc]SNMP Informant\sqlserver\mibs\informant-sqlserver-tree.txt
- [install loc]SNMP Informant\ExchangeWMI\mibs\informant-exchange-tree.txt

Use the Correct MIBS!

Be sure to select the correct SNMP version of MIBS for your monitoring application or MIB Browser. SNMP Informant comes with both SMIv1 (SNMPv1) and SMIv2 (SNMPv2) MIBS. You can access the SNMP Informant MIBS in the product install directory. Their location will be in directories similar to the following:

- C:\Program Files\SNMP Informant\[product]\mibs\SMIv1 or SMIv2
Using the PDH Providers

The SNMP Informant PDH providers are a bridge between the standardized SNMP protocol and the non-standard Windows performance information. Understanding how Performance Counters are referenced is necessary before grasping the SNMP OID structure.

As seen when adding a performance counter using the Windows Performance Monitor, a specific counter item is referenced using at least two names (object and counter) and where required a third name (instance).

- **The object name** is the group the performance item is associated with (i.e. memory, processor, process, etc.).
- **The counter name** is the specific type of performance information queried for that object (e.g., the percentage of CPU time for the processor object).
- **The instance name** is the specific instance that the query is being performed on (e.g., CPU 0 for the processor object, the lsass.exe process, etc). The instance name is always referenced as a string.

The illustration below shows how to relate Performance Counters, Objects and Instances to an SNMP Informant OID (in this case for Memory: Available bytes):

![ANATOMY OF AN SNMP INFORMANT OID](image)

Figure 6 – Anatomy of an SNMP Informant OID

More detailed OIDs can contain instance names. For example, it is not uncommon for a server to have multiple disks, processors and network adapters. Therefore, OIDs for these performance objects will have multiple instances.

Use the modified ASCII chart below to make it easier to read SNMP Informant instance OID values, and convert them to their ASCII equivalent. We have removed the Hex and Octal values, leaving only the Decimal values.

Decimal to ASCII conversion applies to many SNMP Informant PDH agent tables, where the information (name) is pulled directly from the Performance Data Helper (we don’t make the names up).

Here are four examples of converting an SNMP Informant Instance to an ASCII (character) equivalent. For ease of reading, we will always assume that SNMP Informant provider is the Advanced version, and the prefix will be .iso.org.dod.internet.private.enterprises.wtcs.informant.advanced (.1.3.6.1.4.1.9600.1.2), and the walk will occur below that point. The first number after the fully qualified OID (.1.3.6.1.4.1.9600.1.2) is the OBJECT. After that comes the COUNTER. After THAT comes the INSTANCE. The first number after the INSTANCE tells us how many characters follow, and the characters are ASCII, and they make up the NAME of the INSTANCE. The dots between the characters can be removed to make up the name (Character (ASCII) Equivalent) but are required from an SNMP perspective.)
Example 1: LogicalDisk: Logical Disk Average Read Queue Length

We’ve included a Getif Screenshot in this example to provide further detail.

<table>
<thead>
<tr>
<th>Fully qualified SNMP Informant OID (walk from here)</th>
<th>SNMP Instance (Decimal) OID</th>
<th>Informant (ASCII) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.logicalDiskTable.logicalDiskEntry.lDiskAvgDiskReadQueueLength</td>
<td>2.67.58</td>
<td>C:</td>
</tr>
<tr>
<td>.logicalDiskTable.logicalDiskEntry.lDiskAvgDiskReadQueueLength</td>
<td>2.68.58</td>
<td>D:</td>
</tr>
<tr>
<td>.logicalDiskTable.logicalDiskEntry.lDiskAvgDiskReadQueueLength</td>
<td>6.95.84.111.116.97.108</td>
<td>_Total</td>
</tr>
</tbody>
</table>

- .2 indicates that 2 characters follow
- .6 indicates that 6 characters follow

... and note that the 2 (two) characters are C: (ASCII 67 and 58).

... and note that the 6 (six) characters are _Total (ASCII 95, 84, 111, 116, 97 and 108).

Example 2: Processor: % Processor Time

<table>
<thead>
<tr>
<th>Fully qualified SNMP Informant OID (walk from here)</th>
<th>SNMP Instance (Decimal) OID</th>
<th>Informant (ASCII) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.processorTable.processorEntry.cpuPercentProcessorTime</td>
<td>1.48</td>
<td>0</td>
</tr>
<tr>
<td>.processorTable.processorEntry.cpuPercentProcessorTime</td>
<td>1.49</td>
<td>1</td>
</tr>
<tr>
<td>.processorTable.processorEntry.cpuPercentProcessorTime</td>
<td>6.95.84.111.116.97.108</td>
<td>_Total</td>
</tr>
</tbody>
</table>

- .1 indicates that 1 character follows
- .6 indicates that 6 characters follow
Example 3: PhysicalDisk: Physical Disk Average Disk Queue Length

<table>
<thead>
<tr>
<th>Fully qualified SNMP Informant OID (walk from here)</th>
<th>SNMP Informant Instance (Decimal) OID response</th>
<th>Character (ASCII) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.physicalDiskTable.physicalDiskEntry.pDiskAvgDiskQueueLength</td>
<td>.4.48.32.67.58</td>
<td>0 C:</td>
</tr>
<tr>
<td>.physicalDiskTable.physicalDiskEntry.pDiskAvgDiskQueueLength</td>
<td>.4.49.32.68.58</td>
<td>1 D:</td>
</tr>
<tr>
<td>.physicalDiskTable.physicalDiskEntry.pDiskAvgDiskQueueLength</td>
<td>.6.95.84.111.116.97.108</td>
<td>_Total</td>
</tr>
</tbody>
</table>

- .4 indicates that 4 characters follow
- .6 indicates that 6 characters follow

Example 4: Network Interface: netBytesTotalPerSecond

<table>
<thead>
<tr>
<th>Fully qualified SNMP Informant OID (walk from here)</th>
<th>SNMP Informant Instance (Decimal) OID response</th>
<th>Character (ASCII) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.networkInterfaceTable.networkInterfaceEntry.netBytesTotalPerSec</td>
<td>.25.77.83.32.84.67.80.32.76.111.111.112.98 .97.99.107.32.105.110.116.101.114.102.97. 99.101</td>
<td>MS TCP Loopback interface</td>
</tr>
<tr>
<td>.25 indicates that 25 characters follow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fully qualified SNMP Informant OID (walk from here)</th>
<th>.networkInterfaceTable.networkInterfaceEntry.netBytesTotalPerSec</th>
<th>Character (ASCII) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP Informant Instance (Decimal) OID response</td>
<td>.27.72.80.32.78.67.51.49.54.51.32.70.97.11 5.116.32.69.116.104.101.114.110.101.116.3 2.78.73.67</td>
<td>HP NC3163 Fast Ethernet NIC</td>
</tr>
<tr>
<td>.27 indicates that 25 characters follow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Understanding Performance Counters

Once proficient in using the Windows Performance Monitor and Windows Performance Counters in general, you will be well positioned to effectively use SNMP Informant. Refer to the following URL for a good end-user description of Performance Counters and how to use them.

Microsoft TechNet – How to Use Performance Monitor in Windows 2008
- http://gallery.technet.microsoft.com/How-to-Use-Performance-6b86b7fc

Microsoft TechNet – Windows Performance Monitor

Microsoft TechNet – Working with Performance Counters:

Windows IT Pro – Monitor Windows Server with Performance Counters:
SNMP Informant Decimal OID instance to ASCII Character Conversion Table

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>Character Value</th>
<th>Decimal Value</th>
<th>Character Value</th>
<th>Decimal Value</th>
<th>Character Value</th>
<th>Decimal Value</th>
<th>Character Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
<td>6</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>9</td>
<td></td>
<td>10</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>13</td>
<td></td>
<td>14</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>17</td>
<td></td>
<td>18</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>21</td>
<td></td>
<td>22</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>25</td>
<td></td>
<td>26</td>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>29</td>
<td></td>
<td>30</td>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>SPACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= commonly seen values
Using the WMI-Exchange Provider

Exchange Server 2003 and 2007 has different levels of administrative responsibility, and supports three types of administrative roles: Exchange Full Administrator, Exchange Administrator and Exchange View Only Administrator.

- **Exchange Full Administrator:** This role has total control over the Exchange organization, and can delegate administrative roles to other users.

- **Exchange Administrator:** This role is identical to the Exchange Full Administrator role, but the Exchange Administrator role lacks the power to delegate administrative roles to other users.

- **The Exchange View Only Administrator:** In Exchange Server 2003, this role is intended for administrators to use during training. The Exchange View Only Administrator role gives administrators-in-training the ability to browse through the Exchange System Manager (ESM), but no power to make any changes.

The SNMP Informant Exchange Helper service must be configured to automatically start and run (Log On As) a user with at least Exchange View Only Administrator privileges.

Assuming that no Exchange View Only Administrator exists, one can be created. Simply create a domain account called exchange-read-admin. Assign a password that you can remember, and set it to no expiry. While this is not optimal, if password expiry is allowed, the SNMP Informant Exchange Helper service will eventually stop working.

Next, create a domain group called Exchange-Read-Admins, and put the user you just created above in that group.

Then, start the Exchange System Manager (ESM) as a user with Exchange Full Administrator privileges. Then, select the Organization name, right click it, and choose Delegate Control.

This will start the Exchange Administration Delegation Wizard.
Click Next, and add the Exchange-Read-Admins domain group you just created.

Click Add, then Browse
Type **Exch** in the box, and press Check Names. You should then be able to pick the domain group called **Exchange-Read-Admins**, created earlier.

![Image of the Exchange Administration Delegation Wizard]

Click OK.

![Image of Delegate Control]

Verify that the right group is in the Exchange View Only Administrator's Role, and press OK.

Press Next.
Press Finish to complete the role assignment.

Now, set the SNMP Informant Exchange Helper service to start and run logged in as the exchange-read-admin account created earlier.

Once you have completed the service configuration, restart the SNMP Informant Exchange Helper Service. Check to make sure it started with no error.
Finally, check the Application event log for a successful start message from SNMP Informant.

Using the WMI-OS Provider
Like the WMI-Exchange provider, the WMI-OS provider also has a helper service. It includes support for SET commands sent to it from the NMS. By populating an OID with a value, and sending a SET command, you can control the WMI-OS provider.

Win32Shutdown (.1.3.6.1.4.1.9600.1.22.8.9.0)
The win32Shutdown OID allows a user to remotely logoff, restart, or shutdown a destination computer using SNMP SET. Make sure to add the .0 to the end of the OID when setting the value. The OID must be set to an INTEGER value representing one of the following states:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Forced Power Off</td>
</tr>
<tr>
<td>8</td>
<td>Power Off</td>
</tr>
<tr>
<td>6</td>
<td>Forced Reboot</td>
</tr>
<tr>
<td>5</td>
<td>Forced Shutdown</td>
</tr>
<tr>
<td>4</td>
<td>Forced Log Off</td>
</tr>
<tr>
<td>2</td>
<td>Reboot</td>
</tr>
<tr>
<td>1</td>
<td>Shutdown</td>
</tr>
<tr>
<td>0</td>
<td>Log Off</td>
</tr>
</tbody>
</table>
Win32CreateProcess (.1.3.6.1.4.1.9600.1.22.9.3.0)

The win32CreateProcess OID allows a user to remotely start a process on the destination computer using SNMP SET. Make sure to add the .0 to the end of the OID when setting the value. The OID must be set to a STRING value representing the start command you wish to run. For security reasons, the initial program can ONLY be run out of the "spawn" sub-directory below where the agent is installed on the computer (example below). You can configure the location of the spawn directory using SNMP Informant registry settings (See the "Configuring SNMP Informant" section for more information on how to do this).

C:\Program Files\SNMP Informant\operating_system\spawn\.

The initial program (in the "spawn" directory could then call or execute programs in other directories if necessary/as required.

Below are some examples of acceptable and not acceptable forms of strings for the SNMP SET command.

Acceptable Forms

- Start_prog.cmd
- progA.vbs
- mytool.exe
- start_prog.cmd C:\winnt\system32\notepad.exe
- mytool.exe C:\temp\input.xml
- junk.txt

NON-Acceptable Forms

- C:\winn\system32\notepad.exe
- C:\winnt\system32\cmd /c test.cmd
- \computerA\c$\temp\run.exe
- ..\..\test.cmd

The process will be created with the user account that the SNMP service runs with, normally the SYSTEM account. If you wish to create the process a different account than what the SNMP Service is executed as, you can write a script which would run a tool like "su.exe" to execute as a different user.

By default, GUI application will not be displayed on the console window. If the GUI application must be shown, then you must enable "Allow service to interact with desktop". An administrator can do this by running the Windows Service Manager, double clicking on the SNMP Service entry, clicking on the "Log On" tab, and enabling the "Allow service to interact with desktop" checkbox, then clicking the "Okay" button, and restarting the SNMP service. Doing this will cause GUI applications started by the SNMP Informant Operating System agent to appear on the destination computer's console when executed.
The ossvcState OID allows a user to remotely start, stop, pause, or resume a Windows Service on the destination computer using SNMP SET. The .x at the end of the OID is the instance number of the service you wish to perform the action on. The OID must be set to an INTEGER value representing the final state you wish to put the service into. Below is a list of valid final states you can set the service to:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Paused</td>
</tr>
<tr>
<td>4</td>
<td>Running (or resume)</td>
</tr>
<tr>
<td>1</td>
<td>Stopped</td>
</tr>
</tbody>
</table>

For example, if the service is in the "stopped" state and you wish to start it, you would set the state to "running". If you would want to pause a service, you would set it to the "paused" state. If you wish to resume a service, you would set it to the "running" state.

Here’s an example:

First, you need WALK the Service Caption OID (.1.3.6.1.4.1.9600.1.22.11.1.1.4) to identify the service you want to manipulate. There you will see a list of all the services identified by an instance number. Let’s assume that osssvcCaption.71, or .1.3.6.1.4.1.9600.1.22.11.1.1.4.71 = Task Scheduler

Then navigate to the ossvcState OID (.1.3.6.1.4.1.9600.1.22.11.1.1.21). WALK this OID, and you will see the instance numbers again, and their current states. Find the instance number that matches the process you want to manipulate (as identified in the first step). In this example, .ossvcState.71 = running

SO … in order to stop the Task Scheduler service, you would send an SNMP SET to .1.3.6.1.4.1.9600.1.22.11.1.1.21.71 with a value of 1 (Stop).

Using the MSCS Provider

The SNMP Informant Cluster Server Agent allows you to collect Microsoft Cluster Services information remotely using SNMP, by linking into the Cluster Services components (on your Windows 2000 or Windows 2003 cluster server, of course).

Cluster Services must be present on the server in order for the SNMP Informant Cluster Server Agent to install.

First, install the MSCS Informant agent on all the clustered computers. Then, when you want to collect cluster server information, query the cluster name rather than each computer individually. The information is redundant on all clustered computers, so by querying the cluster name, you will get the information from the active node.

Second, clustered resources are assigned to cluster groups. Whenever a cluster resource fails (e.g., a node failure or a SCSI interface failure), the entire group is moved to one of the other nodes in the cluster. Since SNMP Informant currently does not support any trap based notifications, the best way to monitor for a failure is to poll either mscsResGroupOwnerNode or mscsResourceOwnerNode. If the owner ever changes, it’s usually because the owner node has shutdown/restarted, a hardware failure occurred, somebody manually moved the cluster resources through the Cluster Administrator interface, or a failback occurred. If a cluster resource has permanently failed (e.g., a permanent clustered disk failure), then you can monitor mscsResGroupState or mscsResourceState for this failure.

The "State" OIDs will not pick up transient changes (e.g., a resource group moving from one computer to another successfully) unless you poll at a fairly high frequency. You can also monitor mscsNodeState to see if a specific cluster node is up or down.
Using the Custom Provider
The SNMP Informant Custom provider allows you define your own SNMP query structure and query rules to collect data. This provider is only available in the SNMP Informant-Premium product. It currently supports seven different types of query rules:

- **RegistryQuery** – A RegistryQuery is one that retrieves a registry value from the HKEY_LOCAL_MACHINE registry hive.
- **ExecuteQuery** – A ExecuteQuery provides the capability to execute a binary executable, VBScript, or JavaScript,
- **PerfPerformanceQuery** – A performance query is one that performs a Windows performance query and calculation (based on PDH).
- **FixedQuery** – The fixed query returns a constant value whenever the given OID Suffix is queried.
- **PerformanceTable** – A performance table is much like a PerformanceQuery, except that all # the instances for that PDH performance object are returned.
- **WMI Table** – A WMI table provides the capability to query a specific WMI class or execute a WQL statement
- **CmdletTable** – Some text goes here

This functionality adds a new level of flexibility to SNMP Informant and further extends SNMP capability on Windows systems.

How it Works
From a user perspective, the SNMP Informant Custom Provider consists of two components, the Agent Definitions File and the Custom MIB. SNMP Informant comes with samples of each, allow you to rapidly begin using the tool. It is important to realize that the two files are intimately connected.

- **The Agent Definitions File** – By reading this file on startup - located in the “custom” directory where you install the SNMP Informant software (i.e. C:\Program Files\SNMP Informant\custom by default) - SNMP Informant-Custom makes it (as an example) possible for you to monitor applications that publish performance information to the Performance Monitor applet, but that are not otherwise SNMP enabled. For example, many companies have written custom programs, and those programs can be monitored locally using Performance Monitor. Now, you can "SNMP enable" those applications using SNMP Informant! The Agent Definitions file is a simple text file, and can be modified using Windows Notepad or another editor program. It contains information about what the custom agent will do, and how it will respond (i.e. What OIDs to listen for and what actions to take).
Note: To force the SNMP Informant Custom provider to re-read the Agent Definitions file (i.e. after you have made a change to it), you must restart the SNMP Informant Custom Helper service.

- The Corresponding Custom MIB file provides integration into an NMS and should be created in such a way that it matches the Agent Definitions file, so that query types entered into the Agent Definitions File are linked to sections in the MIB. The MIB file included with the SNMP Informant-Custom product is a sample only, built to correspond to the Agent Definitions file and demonstrate the capabilities of the product. Once installed and started, SNMP Informant-Custom will respond to SNMP requests. The screenshot below shows SNMP Informant-Custom responding to an SNMP WALK message in the Registry tree. Data returned comes from the Custom provider accessing the registry on a Windows 7 system as per the Agent Definitions file above.
Please note: Because SNMP Informant-Custom lets you define your OWN OIDs, you are responsible for the creation and maintenance of a MIB file that corresponds to the Agent Definitions.ini file. To make it easier for you we have included a sample MIB file that corresponds to the sample Agent Definitions.ini file that ships with the product. Feel free to modify THAT MIB file or create and use your own.

There are a couple of ways you can edit your own MIB.

- **One is to use a text editor** with a highlighter, and copy an existing MIB and make it your own. Here's a link to ConTEXT, a decent freeware editor, and the ConTEXT SNMP MIB highlighter. Download and install ConTEXT, and then download and save the highlighter in the Program Files/Context/Highlighters directory. Then, open a MIB file, and you should see syntax highlighting for SNMP MIBs, making it much easier to read (see image below).

- **The other is to purchase a proper MIB Designer program.** If you are going to get serious about using the SNMP Informant-Custom provider, this is the way to go. There are couple good ones out there. Check out MIBDesigner, and MIB Studio for starters.

Note: When the custom provider starts up, it looks for the Agent Definitions file, and if not present or not correctly formatted, will not load successfully. When in doubt, restart the SNMP Informant Custom Helper service.

IMPORTANT: Due the extensive customization capabilities of SNMP Informant-Custom, Informant Systems will provide only limited support for custom MIB file issues. If we determine an incident to be related to a modification of the sample MIB file included with SNMP Informant-Custom, or if it involves a user’s custom MIB file, we will be limited in our ability to assist you.
The Agent Definitions File:
The agent definitions file is divided into two parts:

- The root MIB definition section
- The query specifiers section

The root MIB definition section has one entry. It has to be the first non-comment entry (comment entries start with a #) within the file, and it identifies the root OID prefix that applies to ALL queries within the custom agent.

- This flexibility allows SNMP Informant to respond to queries on a company’s Private Enterprise OID if they have one registered with IANA.
 - Default Setting:
 - ROOT = .1.3.6.1.4.1.9600.1.99

The query specifiers section allows you to add numerous custom query rules. The generic format of a query rules is defined below, with each field separated by a whitespace (space or tab).

```
<OID_SUFFIX>  <QUERY_TYPE>  <ASN_DATATYPE>  <STRING_ARGS>...
```

- The OID_SUFFIX is appended to the root MIB defined at the beginning of the file to define the entire MIB. For example, if the root MIB is defined as .1.3.6.1.4.1.9600.1.99 (default) and the OID_SUFFIX is set to 1.1.0, then the entire OID path for that particular query will be .1.3.6.1.4.1.9600.1.99.1.1.0.
 - Note: RegistryQuery, ExecuteQuery, and PerformanceQuery are all non-SNMP tables and thus should end with a .0 specifying that it is a SNMP node.
- The QUERY_TYPE defines what kind of query is being made, and is either a PerformanceQuery, an ExecuteQuery or a RegistryQuery.
 - PerformanceQuery – A performance query is one that performs a Windows performance query and calculation (based on PDH, the Performance Data Helper). A performance query is composed of two to three string identifiers (depending if the performance object has instances associated with it or not). The first string argument is the performance object followed by the performance counter. Performance objects that are singletons (e.g., Memory, Objects, TCP, etc) do not have an instance associated with them. Performance objects that have multiple items (e.g., Process, LogicalDisk, Network Interface) must have the instance column populated. The best way to determine these entries is to use the Windows Performance tool in Administrative Tools to determine the necessary string argument values. The format of performance queries is shown below depending on if the an instance is required or not:

```
<OID_SUFFIX> PerformanceQuery <ASN_DATATYPE> '<PERF_OBJECT>' '<PERF_COUNTER>'
```

```
<OID_SUFFIX> PerformanceQuery <ASN_DATATYPE> '<PERF_OBJECT>' '<PERF_COUNTER>' '<PERF_INSTANCE>'
```

- RegistryQuery – A Registry query is one that retrieves a registry value from the HKEY_LOCAL_MACHINE registry hive. A RegistryQuery is composed of two arguments, the registry key and valueName. The RegistryQuery is in the following format:

```
<OID_SUFFIX> RegistryQuery <ASN_DATATYPE> '<REG_KEY>' '<REG_VALUENAME>'
```
The ASN Datatypes defines how the data should be returned and need to be:

- OCTETSTRING for registry datatypes of REG_SZ and REG_EXPAND_SZ
- COUNTER64 for registry datatypes of REG_QWORD
- All other ASN datatypes for registry datatypes of REG_DWORD.

The following Datatype values are supported:

- COUNTER32 - integer which increases until a maximum value and goes back (wraps) to zero, range is 0 to 2\(^{32}\)-1
- COUNTER64 – identical to counter 32, range is 0 to 2\(^{64}\)
- GAUGE32 - integer which increases and decreases, range is 0 to 2\(^{32}\)-1
- INTEGER32 a whole number, range is -2\(^{31}\) to 2\(^{31}\)-1
- OCTETSTRING - a string of octets which is used to represent hexadecimal data (i.e. physical address of an interface).
- UNSIGNED32 - unsigned integer, range is 0 to 2\(^{32}\)-1

ExecuteQuery – A ExecuteQuery provides the capability to run a binary executable, VBScript, or JavaScript, capture the standard output and standard error streams, and return those values back to the SNMP Manager Station. The agent will terminate the process and return whatever captured data has been received if the executed process does not exit within 3 seconds. The ExecuteQuery is in the following format:

\(<\text{OID_SUFFIX}>\) ExecuteQuery <ASN_DATATYPE> 'SPAWN_COMMAND'\

In the case of SPAWN_COMMAND, the script or executable program to run must be present in the “spawn” directory located below where SNMP Informant custom is installed (i.e. C:\Program Files\SNMP Informant\custom\spawn).

A sample Agent Definitions File is shown on the next few pages.

An important note about the SNMP Informant Custom Helper Service

If the Agent Definitions file (for the Custom Provider) is ever modified, then the SNMP Informant Custom Helper service MUST be restarted, since the .INI file is only read on startup. You can do this from the command line on the system running SNMP Informant like so:

```
net stop snmpinformantct
net start snmpinformantct
```
Agent Definitions File

Copyright (c) 2012 Informant Systems, Inc.
All rights reserved.

Sample INI file for custom agent
#
Comments are specified with a '#' as the first non-whitespace character
#

ROOT MIB
#
The first entry in the INI file needs to be the root MIB OID prefix. The
custom agent will fail to initialize if this value is in an invalid format
or does not exist. The value is specified in a numeric OID format with or
without a preceeding dot.
#
Note: This root oid CAN BE CHANGED if you want to use SNMP Informant to
replace existing technology at the agent side. If you DO change the root
below, you MUST have a corresponding MIB that matches this file. You must
also restart both the SNMP Informant Custom Helper service and the Microsoft
Windows SNMP service after you save the change.
#
If you choose to leave the root value at the default below and use the
included INFORMANT-CUSTOM.MIB file (in c:\program files\snmp informant\custom),
then be sure to edit that file to match this ini file.
#

ROOT = .1.3.6.1.4.1.9600.1.99

QUER Y RULES
#
After the root mib is specified, the user will specify the different custom query rules. All query rules contain the following common format:

- OID Suffix is appended to the root MIB OID defined above to generate the entire OID structure. For example, given a ROOT of .1.3.6.1.4.1.9600.1.99 and an OID Suffix of .1.1.0, the entire OID for that query will be .1.3.6.1.4.1.9600.1.99.1.1.0. All entries should end with a .0 specifying that it is an SNMP node entry (SNMP tables are currently not supported).

- The ASN Datatype defines the format of the data being retrieved. The following data type values are supported:
 - Counter32
 - Counter64
 - Gauge32
 - Integer32
 - OctetString
 - Unsigned32

For PerformanceQueries, an OctetString will retrieve the floating-point performance value and embed it within a string and return that back to the SNMP monitor station. This is useful when a value is normally a fraction (less than one) and will be returned as zero for all other ASN datatypes.

The following query types are supported:

- REGISTRYQUERY
 A RegistryQuery is one that retrieves a registry value from the HKEY_LOCAL_MACHINE registry hive. A RegistryQuery is composed of two arguments, the registry key and ValueName. The RegistryQuery is in the following format:

<OID Suffix> RegistryQuery <ASN Datatype> "<REG_KEY>" '"<REG_VALUENAME>"'

Each field needs to be separated by a whitespace (space or tab) along with the registry key and valuename entries being single-quoted. The ASN datatype needs to be OctetString for registry datatypes of REG_SZ and REG_EXPAND_SZ, Counter64 for registry datatypes of REG_QWORD, and all other ASN datatypes for registry datatypes of REG_DWORD.
EXECUTEQUERY

A ExecuteQuery provides the capability to execute a binary executable, VBScript, or JavaScript, capture the standard output and error streams, and return those values back to the SNMP Manager Station. The agent will terminate the process and return whatever captured data has been received if the spawned process does not exit within 3 seconds. The ExecuteQuery is in the following format:

- <OID Suffix> ExecuteQuery <ASN Datatype> '<Spawn Command>'

Each field needs to be separated by a whitespace (space or tab) along with the spawn command in single quotes. The maximum possible returned length is 8192 characters for OctetString ASN datatypes. All other data types will attempt to convert the standard-out or standard-error to that ASN datatype. If the conversion fails a value of zero will be returned.

For security reasons, the initial program can ONLY be run out of the "spawn" sub-directory where the agent is installed on the computer. You can configure the location of the spawn directory using SNMP Informant registry settings (See the "Configuring SNMP Informant" section for more information on how to do this).

PERFORMANCEQUERY

A performance query is one that performs a Windows performance query and calculation (based on PDH). A performance query is composed of two to three string identifiers (depending if the performance object has instances associated with it or not). The first string argument is the performance object followed by the performance counter. Performance objects that are singletons (e.g., Memory, Objects, TCP, etc) do not have an instance associated with them but performance objects that have multiple items (e.g., Process, LogicalDisk, Network Interface) must have the instance column populated. The best way to determine these entries is to use the Windows Performance tool in Administrative Tools to determine the necessary entries. The format of performance queries is shown below depending on if an instance is required or not.

- <OID Suffix> PerformanceQuery <ASN Datatype> '<PERF_OBJECT>' '<PERF_COUNTER>'
- <OID Suffix> PerformanceQuery <ASN Datatype> '<PERF_OBJECT>' '<PERF_COUNTER>' '<PERF_INSTANCE>'

Each field needs to be separated by a whitespace (space or tab)
along with each performance string entry being single-quoted.
#
- FIXEDQUERY
The fixed query returns a constant value whenever the given OID Suffix
is queried. The FixedQuery is in the following format:
#
<OID Suffix> FixedQuery <ASN Datatype> 'Constant Value'
#
Each field needs to be separated by a whitespace (space or tab)
along with each entry being single-quoted.

- PERFORMANCETABLE
A performance table is much like a PerformanceQuery, except that all
the instances for that PDH performance object is returned. The <OID
Suffix> is appended with the InstanceName (the instance length and then
the ASCII value for each character in the name), much like how the
advanced agent works. The performance table only work with PDH
performance counters that support multiple instances. The
PerformanceTable is in the following format:
#
<OID Suffix> PerformanceTable <ASN Datatype> '<PERF_OBJECT>' '<PERF_COUNTER>'
#
Each field needs to be separated by a whitespace (space or tab)
along with each performance string entry being single-quoted.

- WMITABLE
A WMI table provides the capability to query a specific WMI class or
execute a WQL statement. A WMITable is composed of a WMI namespace
(usually root\cimv2), the WMI class name, and the property name. The
format of the WmiTable is below:
#
<OID Suffix> WMITable <ASN Datatype> '<Namespace>' '<WMI Class>' '<WMI Property>'
#
Each field needs to be separated by a whitespace (space or tab)
along with each entry being single-quoted.

- CMDLETTABLE
A Cmdlet Table provides the capability to query a Cmdlet or Cmdlet
Condition through SNMP. The query is composed of the Cmdlet statement
along with the Cmdlet Property. The format of CmdletTable is below:
<OID Suffix> WMITable <ASN Datatype> 'cmdlet Name' 'cmdlet Property' # Each field needs to be separated by a whitespace (space or tab) # along with each entry being single-quoted. # You will need to restart the SNMP Informant Custom Helper service after you # save your changes before they will take effect. Any file parsing errors # will be placed in the Windows Event Log.

RegistryQuery

<table>
<thead>
<tr>
<th>Suffix</th>
<th>ASN Type</th>
<th>Registry Key</th>
<th>Registry ValueName</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1.1.0</td>
<td>OctetString</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'ProductName'</td>
</tr>
<tr>
<td>.1.2.0</td>
<td>OctetString</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'ProductId'</td>
</tr>
<tr>
<td>.1.3.0</td>
<td>OctetString</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'CurrentBuild'</td>
</tr>
<tr>
<td>.1.4.0</td>
<td>OctetString</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'CurrentBuildNumber'</td>
</tr>
<tr>
<td>.1.5.0</td>
<td>OctetString</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'CurrentVersion'</td>
</tr>
<tr>
<td>.1.6.0</td>
<td>OctetString</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'BuildLab'</td>
</tr>
<tr>
<td>.1.7.0</td>
<td>Unsigned32</td>
<td>'SOFTWARE\Microsoft\Windows NT\CurrentVersion'</td>
<td>'InstallDate'</td>
</tr>
</tbody>
</table>

ExecuteQuery

<table>
<thead>
<tr>
<th>Suffix</th>
<th>ASN Type</th>
<th>Command Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2.1.0</td>
<td>OctetString</td>
<td>'hello_string.js "javascript arg1 example"'</td>
</tr>
<tr>
<td>.2.2.0</td>
<td>OctetString</td>
<td>'hello_string.vbs "vbscript arg1 example"'</td>
</tr>
<tr>
<td>.2.3.0</td>
<td>OctetString</td>
<td>'hello_string.exe "executable arg1 example"'</td>
</tr>
<tr>
<td>.2.4.0</td>
<td>Counter32</td>
<td>'date_integer.js'</td>
</tr>
<tr>
<td>.2.5.0</td>
<td>Counter64</td>
<td>'date_integer.vbs'</td>
</tr>
<tr>
<td>.2.6.0</td>
<td>Integer32</td>
<td>'date_integer.exe'</td>
</tr>
<tr>
<td>.2.7.0</td>
<td>Unsigned32</td>
<td>'date_integer.exe'</td>
</tr>
<tr>
<td>.2.8.0</td>
<td>Gauge32</td>
<td>'date_integer.exe'</td>
</tr>
</tbody>
</table>

PerformanceQuery

<table>
<thead>
<tr>
<th>Suffix</th>
<th>ASN Type</th>
<th>OBJECT</th>
<th>COUNTER</th>
<th>INSTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.3.1.0</td>
<td>Gauge32</td>
<td>'Memory'</td>
<td>'% Committed Bytes In Use'</td>
<td></td>
</tr>
<tr>
<td>.3.2.0</td>
<td>Gauge32</td>
<td>'Memory'</td>
<td>'Available Bytes'</td>
<td></td>
</tr>
<tr>
<td>.3.3.0</td>
<td>Gauge32</td>
<td>'Memory'</td>
<td>'Available KBytes'</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Available MBytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Cache Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Cache Bytes Peak'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Cache Faults/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Commit Limit'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Committed Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.10.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Demand Zero Faults/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.11.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Free System Page Table Entries'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.12.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Page Faults/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Page Reads/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.14.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Page Writes/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pages Input/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.16.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pages Output/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.17.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pages/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.18.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pool Nonpaged Allocs'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.19.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pool Nonpaged Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.20.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pool Paged Allocs'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.21.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pool Paged Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.22.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Pool Paged Resident Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.23.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'System Cache Resident Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.24.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'System Code Resident Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.25.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'System Code Total Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.26.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'System Driver Resident Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.27.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'System Driver Total Bytes'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.28.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Transition Faults/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.29.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Transition Pages RePurposed/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.30.0</td>
<td>PerformanceQuery Gauge32 'Memory' 'Write Copies/sec'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.1.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% C1 Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.2.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% C2 Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.3.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% C3 Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.4.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% DPC Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.5.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% Idle Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.6.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% Interrupt Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.7.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% Privileged Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.8.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% Processor Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.9.0</td>
<td>PerformanceQuery Gauge32 'Processor' '% User Time' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.10.0</td>
<td>PerformanceQuery Gauge32 'Processor' 'C1 Transitions/sec' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.11.0</td>
<td>PerformanceQuery Gauge32 'Processor' 'C2 Transitions/sec' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.12.0</td>
<td>PerformanceQuery Gauge32 'Processor' 'C3 Transitions/sec' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.13.0</td>
<td>PerformanceQuery Gauge32 'Processor' 'DPC Rate' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.14.0</td>
<td>PerformanceQuery Gauge32 'Processor' 'DPCs Queued/sec' '.Total'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4.15.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'Processor'</td>
<td>'Interrupts/sec'</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>.5.1.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'% Disk Read Time'</td>
</tr>
<tr>
<td>.5.2.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'% Disk Time'</td>
</tr>
<tr>
<td>.5.3.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'% Disk Write Time'</td>
</tr>
<tr>
<td>.5.4.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'% Free Space'</td>
</tr>
<tr>
<td>.5.5.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'% Idle Time'</td>
</tr>
<tr>
<td>.5.6.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk Bytes/Read'</td>
</tr>
<tr>
<td>.5.7.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk Bytes/Transfer'</td>
</tr>
<tr>
<td>.5.8.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk Bytes/Write'</td>
</tr>
<tr>
<td>.5.9.0</td>
<td>PerformanceQuery</td>
<td>OctetString</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk Queue Length'</td>
</tr>
<tr>
<td>.5.10.0</td>
<td>PerformanceQuery</td>
<td>OctetString</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk Read Queue Length'</td>
</tr>
<tr>
<td>.5.11.0</td>
<td>PerformanceQuery</td>
<td>OctetString</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk Write Queue Length'</td>
</tr>
<tr>
<td>.5.12.0</td>
<td>PerformanceQuery</td>
<td>OctetString</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk sec/Read'</td>
</tr>
<tr>
<td>.5.13.0</td>
<td>PerformanceQuery</td>
<td>OctetString</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk sec/Transfer'</td>
</tr>
<tr>
<td>.5.14.0</td>
<td>PerformanceQuery</td>
<td>OctetString</td>
<td>'LogicalDisk'</td>
<td>'Avg. Disk sec/Write'</td>
</tr>
<tr>
<td>.5.15.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Current Disk Queue Length'</td>
</tr>
<tr>
<td>.5.16.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Disk Bytes/sec'</td>
</tr>
<tr>
<td>.5.17.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Disk Read Bytes/sec'</td>
</tr>
<tr>
<td>.5.18.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Disk Reads/sec'</td>
</tr>
<tr>
<td>.5.19.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Disk Transfers/sec'</td>
</tr>
<tr>
<td>.5.20.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Disk Write Bytes/sec'</td>
</tr>
<tr>
<td>.5.21.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Disk Writes/sec'</td>
</tr>
<tr>
<td>.5.22.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Free Megabytes'</td>
</tr>
<tr>
<td>.5.23.0</td>
<td>PerformanceQuery</td>
<td>Gauge32</td>
<td>'LogicalDisk'</td>
<td>'Split IO/Sec'</td>
</tr>
</tbody>
</table>

Suffix FixedQuery ASN Type Value
--- --- --- ---
.6.1.0 FixedQuery OctetString 'Fixed String'
.6.2.0 FixedQuery Unsigned32 '123'
.6.3.0 FixedQuery Counter32 '456'
.6.4.0 FixedQuery Gauge32 '789'
.6.5.0 FixedQuery Integer32 '987' '
.6.6.0 FixedQuery Counter64 '123456789'

Suffix PerformanceTable ASN Type OBJECT COUNTER
--- --- --- --- ---
.7.1.1 PerformanceTable OctetString 'Processor' '*'
.7.1.2 PerformanceTable Gauge32 'Processor' '% C1 Time'
.7.1.3 PerformanceTable Gauge32 'Processor' '% C2 Time'
7.1.4 PerformanceTable
- Gauge32
- 'Processor'
- '% C3 Time'

7.1.5 PerformanceTable
- Gauge32
- 'Processor'
- '% DPC Time'

7.1.6 PerformanceTable
- Gauge32
- 'Processor'
- '% Idle Time'

7.1.7 PerformanceTable
- Gauge32
- 'Processor'
- '% Interrupt Time'

7.1.8 PerformanceTable
- Gauge32
- 'Processor'
- '% Privileged Time'

7.1.9 PerformanceTable
- Gauge32
- 'Processor'
- '% Processor Time'

7.1.10 PerformanceTable
- Gauge32
- 'Processor'
- '% User Time'

7.1.11 PerformanceTable
- Gauge32
- 'Processor'
- 'C1 Transitions/sec'

7.1.12 PerformanceTable
- Gauge32
- 'Processor'
- 'C2 Transitions/sec'

7.1.13 PerformanceTable
- Gauge32
- 'Processor'
- 'C3 Transitions/sec'

7.1.14 PerformanceTable
- Gauge32
- 'Processor'
- 'DPC Rate'

7.1.15 PerformanceTable
- Gauge32
- 'Processor'
- 'DPCs Queued/sec'

7.1.16 PerformanceTable
- Gauge32
- 'Processor'
- 'Interrupts/sec'

Suffix WMITable
- ASN Type
- Namespace
- WMI CLass
- Property

8.1.1 WMITable
- Integer32
- 'root\cimv2'
- 'Win32_Process'
- '#'

8.1.2 WMITable
- OctetString
- 'root\cimv2'
- 'Win32_Process'
- 'Name'

8.1.3 WMITable
- Unsigned32
- 'root\cimv2'
- 'Win32_Process'
- 'ProcessId'

8.1.4 WMITable
- Unsigned32
- 'root\cimv2'
- 'Win32_Process'
- 'ParentProcessId'

8.1.5 WMITable
- Counter32
- 'root\cimv2'
- 'Win32_Process'
- 'PageFaults'

8.1.6 WMITable
- Gauge32
- 'root\cimv2'
- 'Win32_Process'
- 'VirtualSize'

8.1.7 WMITable
- Gauge32
- 'root\cimv2'
- 'Win32_Process'
- 'WorkingSetSize'

Suffix WMITable
- ASN Type
- Namespace
- Property

9.1.1 WMITable
- Integer32
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- '#'

9.1.2 WMITable
- OctetString
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- 'Name'

9.1.3 WMITable
- Unsigned32
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- 'ProcessId'

9.1.4 WMITable
- Unsigned32
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- 'ParentProcessorId'

9.1.5 WMITable
- Counter32
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- 'PageFaults'

9.1.6 WMITable
- Gauge32
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- 'VirtualSize'

9.1.7 WMITable
- Gauge32
- 'root\cimv2'
- 'SELECT * FROM Win32_Process WHERE WorkingSetSize > 50000000'
- 'WorkingSetSize'

Suffix CmdletTable
- ASN Type
- Property

10.1.1 CmdletTable
- Integer32
- 'Get-Process'
- '#'

10.1.2 CmdletTable
- OctetString
- 'Get-Process'
- 'Name'
10.1.3 CmdletTable
- **ASN Type**: Unsigned32
- **Property**: 'Get-Process' 'Id'

10.1.4 CmdletTable
- **ASN Type**: Unsigned32
- **Property**: 'Get-Process' 'HandleCount'

10.1.5 CmdletTable
- **ASN Type**: Counter32
- **Property**: 'Get-Process' 'PageFaults'

10.1.6 CmdletTable
- **ASN Type**: Gauge32
- **Property**: 'Get-Process' 'VirtualMemorySize'

10.1.7 CmdletTable
- **ASN Type**: Gauge32
- **Property**: 'Get-Process' 'WorkingSet'

11.1.1 CmdletTable
- **ASN Type**: Integer32
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}'

11.1.2 CmdletTable
- **ASN Type**: OctetString
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}' 'Name'

11.1.3 CmdletTable
- **ASN Type**: Unsigned32
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}' 'Id'

11.1.4 CmdletTable
- **ASN Type**: Unsigned32
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}' 'HandleCount'

11.1.5 CmdletTable
- **ASN Type**: Counter32
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}' 'PageFaults'

11.1.6 CmdletTable
- **ASN Type**: Gauge32
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}' 'VirtualMemorySize'

11.1.7 CmdletTable
- **ASN Type**: Gauge32
- **Property**: 'get-process | where-object {$_._WorkingSet -gt 20000000}' 'WorkingSet'

9.99.0 RegistryQuery
- **ASN Type**: OctetString
- **Registry Key**: 'Software\WTCS\informant\CustomAgent'
- **Registry ValueName**: 'Version'

END OF FILE
Common SNMP Informant OIDs

The following table lists some common SNMP Informant OIDs over and above the obvious ones (CPU/Disk/Network/Memory) which can be used to monitor different subsystems on Windows Servers.

<table>
<thead>
<tr>
<th>Category</th>
<th>Performance Counter</th>
<th>SNMP Informant Agent Required</th>
<th>SNMP Informant OID (with comments where applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Directory</td>
<td>NTDS\DS Threads in Use</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.55.88.0</td>
</tr>
<tr>
<td></td>
<td>NTDS\LDAP Client Sessions</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.55.94.0</td>
</tr>
<tr>
<td></td>
<td>NTDS\LDAP Searches/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.55.95.0</td>
</tr>
<tr>
<td></td>
<td>NTDS\DRA Inbound Bytes Total/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.55.22.0</td>
</tr>
<tr>
<td></td>
<td>NTDS\DRA Outbound Bytes Total/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.55.40.0</td>
</tr>
<tr>
<td>IIS Web (see Notes below)</td>
<td>IIS Web\Connection Attempts/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.86.1.7.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>IIS Web\Current Connections</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.86.1.14.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>IIS Web\Logon Attempts/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.86.1.27.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>IIS Web\Bytes Received/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.86.1.3.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>IIS Web\Bytes Sent/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.86.1.4.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>IIS FTP (see Notes below)</td>
<td>IIS FTP\Bytes Sent/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.23.1.3.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>IIS FTP\Current Connections</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.23.1.6.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>IIS FTP\Total Logon Attempts</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.23.1.17.6.95.84.111.116.97.108 (_Total)</td>
</tr>
</tbody>
</table>

IIS Notes: IIS Web and FTP counters support all named Web and FTP instances as created. The first number after the bolded number indicates the number of characters in the named instance, and the remaining numbers are ASCII representations of the characters in the name. For example, .6.95.84.111.116.97.108 means that 6 numbers follow, and that they (in ASCII) spell out _Total.
<table>
<thead>
<tr>
<th>Category</th>
<th>Performance Counter</th>
<th>SNMP Informant Provider</th>
<th>SNMP Informant OID (with comments where applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange Server (see SMTP Notes below)</td>
<td>SMTP Server\Categorizer Queue Length</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.76.1.70.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>SMTP Server\Local Queue Length</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.76.1.81.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>SMTP Server\Remote Queue Length</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.76.1.110.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>SMTP Server\Messages Delivered/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.76.1.93.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>SMTP Server\Messages Received/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.76.1.196.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>SMTP Server\Messages Sent/sec</td>
<td>Advanced Provider</td>
<td>.1.3.6.1.4.1.9600.1.2.76.1.101.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>(see Exchange Notes below)</td>
<td>MSExchangeIS Mailbox\Receive Queue Length</td>
<td>Exchange Server Provider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS Mailbox\Send Queue Length</td>
<td>Exchange Server Provider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS Mailbox\Folder Opens/sec</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.15.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS Mailbox\Message Opens/sec</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.15.1.18.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS Mailbox\Local Delivery Rate</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.15.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS Public\Receive Queue Size</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.16.1.27.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS Public\Send Queue Size</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.16.1.45.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS\RPC Operations/sec</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.14.68.0</td>
</tr>
<tr>
<td></td>
<td>MSExchangeIS\RPC Requests</td>
<td>Exchange Server Provider</td>
<td>.1.3.6.1.4.1.9600.1.5.14.70.0</td>
</tr>
</tbody>
</table>

SMTP Service Notes: SMTP service counters support all named SMTP server instances as created. The first number after the bolded number indicates the number of characters in the named instance, and the remaining numbers are ASCII representations of the characters in the name. For example, .6.95.84.111.116.97.108 means that 6 numbers follow, and that they (in ASCII) spell out _Total_. To find out the instance name and the numbers that follow the bolded number, walk OID .1.3.6.1.4.1.9600.1.2.76.1.1.

Exchange Notes: Exchange counters support all named Storage Group names as created. The first number after the bolded number indicates the number of characters in the Storage Group Name, and the remaining numbers are ASCII representations of the characters in the name. For example, .6.95.84.111.116.97.108 means that 6 numbers follow, and that they (in ASCII) spell out _Total_. To find out the Storage Group name, and the numbers that follow the bolded number, walk OID .1.3.6.1.4.1.9600.1.5.15.1.1.
<table>
<thead>
<tr>
<th>Category</th>
<th>Performance Counter</th>
<th>SNMP Informant Agent Required</th>
<th>SNMP Informant OID (with comments where applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Server</td>
<td>SQLServer:Buffer Manager\Buffer cache hit ratio</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.22.1.6.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Buffer Manager\Page reads/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.22.1.14.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Buffer Manager\Page writes/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.22.1.15.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Cache Manager\Cache Hit Ratio</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.24.1.2.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Databases\Active Transactions</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.27.1.2.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Databases\Transactions/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.27.1.32.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:General Statistics\User Connections</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.29.1.17.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:General Statistics\Logins/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.29.1.4.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:General Statistics\Logouts/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.29.1.5.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Memory Manager\Total Server Memory (KB)</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.32.1.13.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Memory Manager\SQL Cache Memory (KB)</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.32.1.12.x (where x increments per SQL instance)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Locks\Lock Requests/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.31.1.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:Locks\Average Wait Time(ms)</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.31.1.2.1.6.95.84.111.116.97.108 (_Total)</td>
</tr>
<tr>
<td>SQL Notes below</td>
<td>SQLServer:SQL Statistics\Batch Requests/sec</td>
<td>SQL Server Application Plus Pack</td>
<td>.1.3.6.1.4.1.9600.1.3.39.1.2.x (where x increments per SQL instance)</td>
</tr>
</tbody>
</table>

SQL Notes: Walk OID .1.3.6.1.4.1.9600.1.3.16.1.2 to determine what instance number (x) matches what database instance number.
Troubleshooting SNMP Informant

SNMP Informant logs events to the Application Event log. Depending on your actions, and the results of queries performed by SNMP Informant, these messages will differ. If *SNMP Informant does not seem to be working*, checking the Application Event Log should be one of your first courses of action.

Another first course of action if you are having issues with SNMP Informant is to restart SNMP. SNMP Informant needs the SNMP service, and if something goes wrong with the SNMP service (hang, memory leak, etc.) it will affect whether or not SNMP Informant works.

The table below lists some troubleshooting steps to take if you find SNMP Informant is not working the way it is supposed to:

Troubleshooting Table

<table>
<thead>
<tr>
<th>Problem</th>
<th>Check</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can’t query any data from SNMP Informant.</td>
<td>Is the Windows SNMP Service installed?</td>
<td>Install the SNMP Service according to this guide.</td>
</tr>
<tr>
<td></td>
<td>Is the Windows SNMP Service running?</td>
<td>Start the SNMP Service using the Windows Service Manager.</td>
</tr>
<tr>
<td></td>
<td>Can you request any SNMP data from the SNMP service?</td>
<td>Check that your community names match your SNMP Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check that the security settings are correct for your environment.</td>
</tr>
<tr>
<td>SNMP is working but SNMP Informant is not</td>
<td>Check that the Windows Application Event Log for any SNMP Informant</td>
<td>Check the SNMP Informant Knowledge base at http://www.snmp-informant.com/knowledgebase.htm</td>
</tr>
<tr>
<td></td>
<td>errors or warnings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check to see if the Windows Performance Monitor works on that computer.</td>
<td>Check the Microsoft Windows support website for related information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://support.microsoft.com</td>
</tr>
<tr>
<td>SNMP Informant is working, but I can’t get OS and/or Exchange and/or</td>
<td></td>
<td>The OS Provider, Exchange WMI provider and Custom Provider must</td>
</tr>
<tr>
<td>Custom information</td>
<td></td>
<td>be restarted each time you restart the SNMP service. In</td>
</tr>
<tr>
<td></td>
<td></td>
<td>addition if the Agent Definitions file (for the Custom Provider) is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ever modified, then the SNMP Informant Custom Helper service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MUST be restarted, since the .INI file is only read on startup.</td>
</tr>
<tr>
<td>Problem</td>
<td>Check</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>I can’t query a specific SNMP Informant OID.</td>
<td>Check to see that you are referencing the SNMP OID correctly by using SNMP GETNEXT/WALK operations.</td>
<td>Use the returned SNMP OID from the GETNEXT/WALK operation.</td>
</tr>
</tbody>
</table>
| That performance counter may not be available on the computer/software you are using. | Check the various SNMP Informant web pages for related information
- http://www.snmp-informant.com/support.htm
Check the Microsoft Windows support website for related information
- http://support.microsoft.com | |
| Check that the Windows Application Event Log for any SNMP Informant errors or warnings. | Check the various SNMP Informant web pages for related information
- http://www.snmp-informant.com/support.htm
Check the Microsoft Windows support website for related information
- http://support.microsoft.com | |

Troubleshooting PDH Providers

If you are trying to do an SNMP GET of a particular OID, and cannot seem to get data, remember that what performance counters you can access all depends on the OS version where SNMP Informant is installed.

For example, Windows 2008 has performance counters that do not exist on Windows 2003, so SNMP GET requests to OIDs that only map to Windows 2008 performance counters will fail on Windows 2003 systems.

The general "can I use SNMP Informant to collect data from the `<insert name here>` performance counter?" test is this:

- Check to see if you can see the local Performance Monitor equivalent of the OID

Check the Performance Monitor applet (Start/Run/Perfmon) on the system you want to collect data from. If you can see the performance object and counter and instances you want (or are trying) to track, then you should be able to install SNMP Informant on that server, and (using the proper OID, of course) use SNMP to GET that data. **If you are unable to see the performance object, counter and instances, then you will NOT be able to get that data using SNMP Informant.**

Sometimes, for reasons we are unable to explain, certain performance counters get de-activated, and subsequently, SNMP Informant is unable to bridge to them. We suggest that you download the Extensible Performance Counter tool and make sure that they ARE in fact activated.

The Extensible Performance Counter List (exctrlst.exe) GUI utility will list all of the services and applications that provide registry-based performance counters on local and remote Windows systems.

Exctrlst displays the names and locations of the dynamic link libraries (DLLs) that support performance counters, indicates disabled counters, and lets you enable and disable the performance counters for a service.
Exctrlst displays the following information about performance counters:

- Services and applications that provide performance counters
- Names and locations of performance counter DLLs
- Enabled and disabled performance counters
- Indexes of performance objects, counter names, and help text provided by the service
- Names of the open, collect, and close procedure of each counter DLL
- The highest index on the system used for performance counters and their help text.

You can download the tool from this link here:

Troubleshooting WMI Providers

As in the Performance Counters, what WMI classes you can access also depends on the OS/product version where SNMP Informant is installed. For example, Windows 2008 may have WMI classes and objects that do not exist on Windows 2003, so SNMP GET requests to OIDs that only map to Windows 2008 WMI classes will fail on Windows 2003 systems. The same applies to the WMI-HW and WMI-Exchange providers.

In order to install successfully, all SNMP Informant WMI Agents requires that the Windows WMI Service is properly installed and configured. A default installation of the Windows WMI service is usually sufficient for SNMP Informant WMI agents to install successfully.

The general "can I access the <insert name here> WMI class?" test is this:

- Check to see if you can see the local WMI class equivalent of the OID

This tool allows you to browse WMI classes on a local or remote computer (using IE) sort of like a MIB Browser. Note that you have to have proper Windows permissions to do so. A secured user account will likely not have the access rights to do so. Log in as a local administrator on the computer in question, install the software, and run it.

If you see the WMI classes and objects you want (or are trying) to track, then you should be able to install SNMP Informant on that server, and (using the proper OID, of course) use SNMP to GET that data. If you are unable to see the WMI classes and objects, then you will NOT be able to get that data using SNMP Informant.

A note about the “No endpoint mapper available” message in the Application Event Log:

The SNMP Informant WMI-OS, and WMI-Exchange providers install a separate SNMP Informant "helper" service to connect to the WMI subsystem using RPC/DCOM. Sometimes this connection cannot be completed, and the error log might get filled with messages like the one below:
Description: SNMP Informant Operating System Helper Service
Error = 80070005
Error Message = Access is denied

This usually accompanies other WMI-related errors, and seldom exists all by itself. It indicates that SNMP Informant cannot “attach” to WMI. If you are getting these error messages from SNMP Informant, check your event logs to see if you are getting 80070005 messages from other services as well, as DCOM security permissions affect more than just SNMP Informant (i.e. .Net runtime. Here are some great starting points:
Meantime, To resolve this (for SNMP Informant at least), start the DCOM Configuration program (start/run/dcomcnfg), and add the SYSTEM account to the Default Access Permissions group.

You should also check the Default Launch Permissions group to ensure the SYSTEM account is also there.

More information about DCOM, including setting access permissions can be found here:
http://support.microsoft.com/search/default.aspx?qu=dcom+sp1

Troubleshooting Custom Providers

Custom providers are a little more complex to troubleshoot. You have to figure out why provider is not returning data.

If the issue is that queries to the Citrix OIDs are not returning data, be sure Citrix is installed on the server where SNMP Informant is installed.

If the issue is that queries to the Cluster Service OIDs are not returning data, be sure Cluster server is installed (and active) on the server where SNMP Informant is installed. If you are querying the virtual name, then you should get a response from whatever node is active at the time of query.

When in doubt, always restart the SNMP service after making any changes

An important note about SNMP Informant Helper Services

The OS Provider, Exchange WMI provider and Custom Provider must be restarted each time you restart the SNMP service. In addition if the Agent Definitions file (for the Custom Provider) is ever modified, then the SNMP Informant Custom Helper service MUST be restarted, since the .INI file is only read on startup.

End of Document